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It is known that a Brownian motion in the unit sphere, with normal

reflection at the boundary, does not hit a specified point on the boundazz:

e ——— et

(see McKean (1969)) .~ The aim of this article is to prove that a non-degen-
eratc diffusion in the closed half space, with certain Wentzell-type bound-
ary conditions, does not hit a point on the boundary specified in advance.

We also give an application to a boundary value problem. \

d, X =0} and G = GuaG,
{

where d >2. We have the coefficients a,b defined on G, and a,y,p defined

Lm:G={x=(ﬁ,“.,x& :x1>0L G = {xeR

on 3G, satisfying one of the following two sets of conditions.

Conditions I. (I1) For each xeG, a(x) = ((aij(x)))ISi,jsd is a d xd
real symmetric positive definite matrix; a(+) is bounded and continuous;

a'l(-) is also bounded and continuous.

(b1(°),..., bd(-)) is a bounded and continuous Rd-valued

(I 2) b()

3l

function on

(I 3) vy(*) (YZ(°),..., yd(~)) is an Rd_l-valued function on 3G;

YjeClz)(BG) for j=2,..., d.

(I14) a=0 as a (d-1)x(d-1) matrix.

(I §) p=0; or pis a bounded locally Lipschitz function which is strictly

positive at each point of 9G.
The set of alternative conditions is

- Conditions IT. (Il 1) 1In addition to (I 1) we assume that for each x¢G,

there cxists a d xd real symmetric positive definite matrix
- = * . . 3
0(x) ’((oij(X)))ISi,jsd such that a(x) =o(x)o*(x); o(*) is bounded and

. -1 . .
continuous, and ¢ (¢) 1is also bounded and continuous.

(I1 2) Same as (1 2).~
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(IT 3) y(°) = (Yz('),..., yd(')) is an Rd'l-valued bounded and continuous

function on 9G.

(I1 4) For each xedG, a(x) = ((qij(x)))ZSi,jsd is a (d-1) x(d -1) real
symmetric positive definite matrix, and there exists a (d-1) x(d-1) real
symmetric positive definite matrix o(x) = ((oij(x)))ZSi,de such that

a(x) =0(x)*0*(x). o(+) and 5'1(-) are bounded and continuous.

(I1 5) Same as (1l 5).

Define
d a2 d 3
L=t ) 00 g e 1600 5 m
i, =1 i3 i=1 i
and
d 2 d
9 9 ]
Jea—tl Yoo (X)) ===+ ]V (X) 5= (2)
axl i,j=2 ij axiaxj jeg 1 3xi

let @ = C([0,») : G) be endowed with the topology of uniform convergence
on compacta and the natural Borel structure.

Under conditions less restrictive than the set of Conditions I, Stroock
and Varadhan (1971) have established the existence of a unique solution to
the submartingale problem corresponding to the coefficients a,b,y,p. Fol-
lowing Watanabe (1971), Nakao and Shiga (1972) have established the existence
of a unique solution to the stochastic differential equation corresponding
to the coefficients a,b,a,y,p under conditions less restrictive than the set
of Conditions II. The equivalence of thesc two formulations can be found
in N.B, Karoui (1975). (Here uniqueness is in thc sense of law).

So, when Conditions T or Il hold, for cach x ¢ G there exists a unique

probability measurc Px on  such that




P {x(e) eG for all t20 and X(0) =x}

n
—

t
2) f(X(1)) - [J{Ige(LH)](X(u)) du
0

isa l;(—submartingale for any f¢ C‘Z)(IRd) satisfying Jf 20 on 3G, and where X(t)
. denotcs the t-th coordinate map on Q; also the process X(t) is strong Markov
and Feller continuous. Further, there exists a continuous, non-decreasing,

non-anticipating process £(t) on Q such that

t
(1) £(t) = [T, (X(u)) dE(u) (3a)
0
and

t t
i (1)) F(E)) - [l LHTX()Idu - [IF(X(u))dE(u) (3b)
0 0

is a Px-martingale for every feCi(Rd).
We shall call the family {Px: x € G} the diffusion corresponding to (L,J).
We first prove a theorem which eftectively reduces the poblem to the
casc of normal reflection; this theorem may be of independent interest. But,

we first need a few lemmas.

Lemma 1. Let g: R™ > R" be a bounded and continuous function (i.e. image of
g is contained in a compact set). Define 8" R" +» R" by gl(x) =x +g(x).

Then £, is onto.

Proof. Let zc R" be tixed. Define hz: R" » R" by hz(x) = -g(x) +z. Since
range of hz is contained in a compact set, by Brouwer's fixed point theorem,
there exists x e R" such that hz(x) =X, i.e. z=x+g(x). This shows that 8,

) is onto. ]

Lemma 2. Let Conditions I hold. There exists a Cz—diffcomorphism T: G+G,

- given by (yl,yz,..., yd) 'l‘(zl,zz,..., zd). such that the following hold:

(i) T is identity on 9G.

.................................




.....................................

(ii}) under T'l, J = o + 29_ Y.(y)-—a—w is transformed to J = 2 on
Byl =21 Byi

azl

3G,
(iii) L, given by (1) (in the variables yl,..., yd), is transformed to
a strictly elliptic operator L with bounded coetficients (in the variables

21’22""’ zd) under T-l; and L has a representation like (1).

Proof. By condition (I 1) there exist constants a, >0, M>0 such that

0
|aij(x)lsM for all xeG, 1<1,j<d,
and

a, = inf{cigenvalues of a(x): x ¢G}.

We first consider the case when there is a constant p such that

oY, 32Y. a,
lYJI: ITX;H’ 'W&Z' fu < (4)

aMd>

For x = (xl,xz,..., xd), let x = (0,x2,..., xd). Note that by (4), tor

x, x' ¢ oG, we have

IY® - YG912 < (@ - DEdx - %2 (s)

l.et A be such that 0 <A< E%iq let ¢ be a smooth function on (-1,») such that
¢ is non-decreasing, |#'| < 1, and ¢(v) = v if vs%\, and ¢(v) = A if v2 ).
befine T: GG by
(Yl’YZ"") Yd) = r(zl)zzt"’! sz

(2)525000y 2g) * 0(2)(0,Y,(2) ..., Y4(2)) (6)

We claim that T is one-to-one; indeed, let T(zl,zz,..., zd) =
T(zi,z',..., zé). By (6), it is clear that zI =zi; and hence, ¢(zl) = ¢(zi).
Thercfore 2z + ¢(zl)Y(;) =72+ ¢(zl)Y(;'). Consequently by (5),

|z - Z'| =¢u]HYG)-'ﬂZw|s Wa-T ulz - 2| < |z - 2|
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which is a contradiction unless Z=2'. Thus T is 1-1. By Lemma 1, T is onto.
(Actually T is one-one and onto on every {z1 = constant}). Since ¢(0) =0, it
follows that T is identity on 93G.

Since T is a bijection, from (6), we may write

1]

(Zlyzzso--s zd) (yln)'z,---’ yd) - ¢(zl)(0)Y2(;)p---, Yd(;))
= ()’1»)’2:---. )’d) - ¢()’1)(0.92()’).---, ed(Y)) (7)

wherce Oj(y) = Yj(;(y)), with z expressed as a function of y.

- Since yj's arc twice continuously differentiable, by inverse function
. . . 2 . . .
thcorcm, it follows that the transformation T is a C -diffeomorphism and its

inverse is also a Cz-diffeomorphism. Thus Gj's are twice differentiable as

(- functions of y.
;f Next, we claim that
3
i) Ay (8)
3Yp 1 - (dAp)
361 aed - BYl avd
To that end, set v, =0, 6, = 0; ape = (ayp,..., ayp), BpY = (5253..., 5;;9.
for p=1,2,..., d. Here it may be noted that Yz,..., Yd can be considered
functions on G by making Yj(x) =Y5(;)). Let DzY denote the (d xd) matrix
ay.
given by (D y)., = =—JL. Then a simple computation shows that
z' ' jk azk
[T + ¢(y1)(DzY)]8p6 = BpY (9)
ay.

wherc I is the (d xd) identity matrix. Since |¢(y1) §El'| < Ay and dip <,
k

it follows that [I + ¢>(y1)DzY]-l exists and

-1 1
I x+ spr Il s 7@y

Hence by (4) and (9) we get




_________

whence (8) follows.

Now for any smooth function g, by (7), we obtain the following:

d 99 .
3g _ 98 o i iy 3g ‘
Tl T JZ?_[ 0102050 - 80y 55 o2,
4 (10)
3 ae z 20. 3
B = (1 - oly,) =] 22 -oly,) =1 =&,
ayi 1 Byi Bz j#l,i 1 ayi azj J

For i=2,..., d. Since $(0) =0, ¢'(0) =1 and 8,(y) =yj(§) on {y, =0}, it

follows from (10) that

d

3 ~ 9
 + Z Y. (y) 5]
Wy aE P

(11)
yl-O 1 =0

This cstablishes conclusion (ii) of the lemma.

Differentiating again, 1t can be shown that, for i,j=1,2

b} d’
2%g) | %),V i, 2%()
N LR o S N Y O 38(*) . first order terms, (12)
ayiayj aziazj K =1 ke szazz

where 613 = 6ik’ since |¢] <A, |¢'] <1, |8 | csu<1, by (4), (8) and the calcu-

lations lecading to (12), it can be proved that

4 I8! < Ty * (13)
r'_;:
ﬁ; Now from (12) we get
N
o d 2 d d 2
L 9g(°) 9 g(
) ) ay ()—3-(—)—+ Y b,(e) B2 Y [a..(2) +n..(2)]
5 i,j=1 By By jop b dy.1 i,3=1 ij ij aziazj
3 + first order terms (14)
y _ed gL . L .
{ wherc ny ( ) Ek £=laij( )le( ). In view of (13) it is ecasily seen that




for any ¢ = (Cl"'," Cd) in le,

ama>

2
| §= n;%i550 S T

n e (15)

i,j=1
Since dAp <3, we have from (4) and (15),

2

g amd>

J

for any £ #0. It may be noted that there are no terms of the form q(-)g(*)
in (12), and hence in (14). Thus E, given by the right-side of (14), is

uniformly elliptic (in the variables 2,2 This completes the proof

P IRREE zd).

in the special case.

. 2 .
In the general case, since YJ er(BG), there exists a constant Kl such

that 2
‘BY.‘ | 3y, |
Y. 1|, L, =L < k..
j azk szdzl 1
K1 _ 4 . .
Choose K large enough that T < 3 Note that the diffusion corresponding
8Md
to (L,J) is also the diffusion corresponding to (L,%J) .
A A . _ Y. SO | .
Sct z, = Kzl, zj = zj, j=2,..., d; Yj(z) =X Yj(z) for ze oG, It is

then casily scen that the general case is reduced to the previous casec with

the new cllipticity constant aO(KAl); also -l-J in the z-coordinates is trans-

K
o 3 d A A 2 . A .
formed to — £i=2Y.(z) —— 1in the z-coordinates. The lemma now follows
92 J 9z .
1 J
in the general case from the special case considered previously. g

e can now state our first theorem.

‘Theorem 1.  Let Conditions | hold; let L, I, J, :7, T be as in Lemma 2. Let

A
{Py: y ¢ G} be the diffusion corresponding to (L,J). Let T: 2+Q be defined

A A ~ A
by (Tw)(t) =1'(w(t)). T is a homeomorphism on Q. Sct Pz =PyT, where y =T(z2).
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Then {Fz: z e G} is the diffusion corresponding to (I,E).

i Proof. lLet Bt = o{X(s): 0ss <t} be the natural filtration in Q. If EeBt,
A Ao ~ —
notc that TE, T IEeBt. Let ché(]Rd) be such that Jf 20 on 3G. Define f
by setting ?(y) =f(T-1y). Note that J?(y)==3f(z), where y =T(z); consequently -

JF>0 on 3G. Hence

t
() - [l1g+(LF](X(w))du
0

g
=
-
o'

-

Y
[

is a I’y-submartingale {(with respect to Bt).

Notc that by Lemma 2
~ A-l -
[T WO NTX(E,W) = [ (LH](X(t,W))

. for all t and all we . Consequently, an clementary argument involving change

of variables yields that )

t ~
fX(t)) - [[I5* (LA (X(s))ds ¢
0

is a Fz-submartingule. This completes the proof. 0

Remark. Let Conditions 11 hold; in addition, let YJ. eCE(BG). Let T be de-

fined as in (6). Since ¢(0) =0, the calculations lcading to (12) show that

2% %g

for 2-1,j<d, =
ayiayj dzlazj

on dG. Consequently, analogues of Lemma 2

and Theorem 1 hold in this case with J given by (2) (in the y-variables) and
2

d 3
—e L.y Y -
tE jap 50 52,02,

=

4

lHerecafter, 1. and J will be as in (1) and (2), that is, in the x-variables.

We need a few lemmas.

LLemna 3. Let Conditions | or Il hold; let {I’x: x ¢ G} be the diffusion corre-

: sponding to (L,J). Lect U be a bounded open set in G. Then sup I—:x(nu) <™
- xeU




P

. . . LT

and sup Ex(ﬁ(nu)) < o, where £ is as in (3) and
xel)

Proof. Let h eci(ﬁ) be such that h(x) =

X
eq 1

g is a suitable positive constant so that Lh=z1
aG n U.

nUAT

.
i
S
'-
.
h
b
i

0

for xcU and X(0) =x. Since h is bounded, Lh =1

and monotone convergence theorem it tollows that

h is bounded, Jh=>q>0 on 3G nU and Lh>0 in U,

gence theorem it follows that sup E (&(nu)) <o, 0
xel X
ix £eG. For x¢G such that x#7, define
d (x; -¢.)(x. -%.)
A (x) = ! a ) LI 23 2
i,j=1 |x -z
d d
B = . s . = -
(x) .Z a;; (), €0 2.2 b, (x) (%, - L,).
i=1 i=1
For r >0, define
. _ B(x) -Ac(x) +C (%)
L- B (r) = su 2
A 14
; 9 | x-¢|=r C(X)
g "B(x) -AL(X) +C (x)
B (r) = inf 2
= |x-z|=r Ap(x)
let ¢ >0. Define tfor rz¢,
- = T
T ) = { g Bpwdu, 1. () = £ 3 B lwdu,
_ r _ r
I'C’C(r) = { exp(-lc'c(u))du , Lc,c(r) = { exp(-lc’c(u))du
and tet ¥ (x) = F o (Ix-2]) and £ (x) = o Ux-eh.
T e e e e

for x=(x1,...

E [h(X(AT)) - h(X(0)) - [ [1g*(Lh)](X(u))du -

i i Jungie Jnbas et ek e e M dhatit e

Ny inf{t 20: X(t) ¢ U}.

. xd) in U and

in U. Note that Jh2q>0 on

By (3b)} and optional sampling theorem, for every T >0

nUAT
[ Jh(X(u))dE(u)] = 0 (16)
0

in U and Jh >0 on 3G, by (16)

sup E (n,) <~. Again, since
x U
xeU

by (16) and monotone conver-




............................

................................

.....
.......

let H be a real valued twice continuously differentiable function on

(0,), and let h(x) = H(|x-Z|). Then it is easily seen that for |x-¢| >0,

' -
2Lh(x) = AC(X)H"(IX-Cl) + H|( X |C )(B(X) - AC(X) + CC(X)) (17)
Xx-C .
Lemma 4. Let Conditions I or Il hold; let [ ¢G be fixed. Let ¢ and n be
fixed real numbers such that c<n; let xeG be such that ¢ <|x-Z| <n; and

let 1 = inf{t20: |X(t) -z| = ¢ or n}. Then

F. Ux-zD *n
=<, ‘ + 1 E_(J Jf _(X(u))dE(w)]
ZegtM Le,g(m x5 et

A

I)x(TaB(Z;:n) < Tali(c:c))

Foo(x-zc]) . ™n _ ;
< S8 b —1 E [ JE, L XW)EW] , (18)
0 3

Fc’c(n) Fc,C(n)

wherc for a closed set K in G, Ty = inf{t 20: X(t) eK}.

Proof. Note that, by Lemma 3, Tn<°° a.s. Px' We apply (3b) to the functions

£ and ?c and procced as in the proof of Lemma 2.1 in Bhattacharya and

LC’C ,rJ

Ramasubramanian (1982); finally an application of the optional sampling

theorem yiclds the lcmma. We omit the details. g

Remark. Suppose I transforms smooth radial functions into smooth radial

functions. Further, let J = 5—?—(—- . Also, let L = 0 for simplicity. Then

1
/\O(x) and B(x) +C0(x) are casily seen to be radial functions; consequently

B =B. Also JF = JF=0 on 3G. Hence (18) becomes

Fotlxh , ) FootlxD )
2 =P T . < 1 . = = (19
W x'9B(0:n) " T3B(03e)T T F

c,0
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Since L transforms radial functions into radial functions, by (17), it can be

seen that solving Lh(x) =0 in c < |x| <n is reduced to solving a (one-dimen-
sional)second order ordinary differential equation in the interval (c,n).
The latter can be done easily, and (19) thus gives the solution to the problem:

Lh(x) = 0 for c<|x|<n, Jh(x) =0 for xedG,

h(x) =1 for |x|] =n, h(x) =0 for |x| = c.

In the general case, for g ¢ oG, Px(TBB(c:n) < TBB(c:c)) is bounded above
and below by similar radial functions (which are harmonic for an elliptic
operator which transforms radial functions into radial functions), plus cor-
rection terms depending essentially on the boundary conditions. (cf. see [1]
and [2].

We are now in a position to prove our main theorem.

Theorem 2. Let Conditions I or II hold, and let [ ¢3G. Then for any n>0

and any x such that 0 < |x-z] sn,

33‘ P TaB(z:n) < TaB(z:c)) = ! | (20)

Consequently, the diffusion does not hit a point on the boundary specified in

advance.

Proof. (i) Let Conditions I hold. In view of Theorem 1 it is sufficient to

consider the case J = -,a%- . In such a case note that JIf. L =0 on 3G. Then, as
1 s

FoUx-zh

FI) o) —— =+ 1 as ¢+ 0 for any n > 0 and any 0<|X'C| <n, (20) follows_

-,

from (18).

(ii) Let Conditions II hold. Let xe¢G be fixed and x#Z. Let n>0 be

fixed. Let € >0 he given. Choose ¢ >0 such that
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Foo(lx-z])
e T u-e (21)
-,
Note that constants Pj, ji=2,..., d can be chosen so that
JE 20 f < | 3G
I ) 2 or csly-¢|lsn, yedsG, (22)
where
d
A ~ ]
J=J+ § o . (), =—
i,j=2 2773 9%

A
Let Qi be the diffusion corresponding to (L,J), starting at x. Note that, by

a Girsanov-type theorem (p. 468 and p. 453 of Nakao and Shiga (1972)),

dqS d ; 2
v . ==X =exp{ ] T.B.(£(t)) - % ) TIE(D)},
c,t dpx B j=2 ) ) j=2 J

t

where (Bz(s),..., Bd(s)) is a (d -1) dimensional Px-Brownian motion indepen-

dent of £(t).

Write A = {Tas(;:n) < TBB(E:C)} azd A = {(TBB(Q:n) At) < (TQB(C:C) At)}.
By (18), (21), (22) applied to the (L,J)-diffusion, we get
c
QX(A) > (1 -¢€)
Conscyuently, Qi(At) > (1 -€); and hence
JaVe e 4P > U -€) (23)

t

Note that Px(wc t >1) +0 as t +=, Hence (23) implies that linan(At) >(1-¢€).
] t_’m

Thus PX(A) >(1-¢), whence (20) follows. ‘this completes the proof. 0

We now give two applications.

Corollary 5. Let Conditions | or Ll hold. let D be a bounded open set 1n G
satisfying an exterior cone condition (in G) and such that 3D n 3G is a finite

set. Let T = inf{t >0: X(t) ¢D}. Then T is continuous P- a.s. for any x¢D.
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Proof. Set 1' = int{t 20: X(t) ¢D}. It can be seen that T is upper semi-
continuous and that t' is lower semicontinuous. 'herefore, it is sufficient
to prove that PX(T =1') =1, Since,by Theorem 2, Px(x(T) €9G) =0, it is suf-
ficient to prove that Py(‘r' >0) =0 for any ye aD, y ¢ 93G. Because of the
0-1 law, it is sufficient to prove that Py(T' >0) #1 for any y € 3D, y ¢ 9G.
This now follows from the exterior cone condition and the support theorem of

Stroock and Varadhan (1979, Exercise 6.7.5). 0

Corollary 6. Let Conditions I or II hold; let p=0. Let D and T be as in
the preceding lemma. Let f,g,h be bounded and continuous functions respect-
ively on b, 3D, 3G. Then

T

T
u(x) = E [8(X(1)) - [ £(X(s))ds - (f) h(X(s))dE(s)]
0

is continuous on D.

Proof. In view of Lemma 3, note that u is well defined and bounded. By the

preceding corollary and Feller continuity, the corollary follows. 0

Remark. Note that u defined as in the preceding corollary is the unique so-

lution to the boundary value problem:

Lu = fonD, u=gond, Ju=h on 3G;

that is,

tA1 tAT
u(X(t A1)) - [ f(X(s))ds - [ h(X(s))d&(s)
0 0

is a Px-martingale, and u = g on aD. If D is as before and is connected,

£f20 in D and if u(x) =0 for some x¢D, x ¢ 939G, then by the preceding corol-

lary and Lemma 2.3 of Bhattacharya (1978) 1t follows that u = 0 in D,
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